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Abstract—This paper presents a comparative study between 

the state-of-the-art single-rotor permanent magnet machine and 

an innovative dual-rotor radial-flux permanent magnet 

machine used in automotive segment. The focus of this paper is 

placed on the battery electric vehicles where electrical machines 

in the range of 120 kW to 500 kW are being manufactured and 

designed for B to D segments representing small to premium 

electric vehicles. The comparison is made taking into account 

major automotive attributes, where the focus is placed on 

efficiency. Considering the importance of the control, impact of 

the pulse-width modulation on the efficiency of the electrical 

machine is considered and a simulation methodology is 

proposed. This study is carried out on an electrical machine with 

the power of 255 kW designed and built for D-E segment 

passenger cars. It should however be noted that the results of 

this paper and the conclusion made may be extended also to 

other battery electric vehicles segments. The requirements and 

design presented in this study is based on central-drive 

propulsion architecture which covers majority of the passenger 

car market today, and in-wheel configuration is not taken into 

account. 

Keywords—Automotive, axial flux permanent magnet 

machines, dual-rotor permanent magnet machines, e-mobility, 

externally excited synchronous machines, field weakening, 

induction motor, interior permanent magnet motor, pulse-width 

modulation.  

I. INTRODUCTION 

In the competitive automotive market, the demand for high 

performance, high efficiency and cost-effective technologies 

requires compact and efficient electric drive units with a high 

level of torque to volume ratio. The main motor topology used 

in e-mobility traction since the beginning of the century has 

therefore, been single-rotor Interior Permanent Magnet (IPM) 

machines.  

Considering their simplified design, lower cost, as well as 

a mature technology, asynchronous motors with either 

aluminium and copper rotors [1-4], have been the 

predominant traction motor topologies in electric 

transportation segments, e.g. railway [5]-[6], during the last 

almost five decades, after transition from DC to AC electrical 

machines. The choice of the copper and aluminium for rotor 

can depend on several  parameters, e.g. application, cooling 

system, as well as the performance requirements. Constrains 

in power at mid-range and high speed, lower efficiency in 

comparison to permanent magnet motor, and fairly low power 

factor has limited usage of this motor technology in e-mobility 

segment to mostly boost electric drive unit engaged during the 

vehicle acceleration, where the main propulsion unit operating 

in normal driving condition is made of permanent magnet 

machines.  

The interesting features of IPM motors [7-11] compared 

to alternative motor topologies, e.g. the relatively high torque 

density, high efficiency and wide field-weakening capability 

has led vehicle OEM's to select this technology in the last 

more than 20 years. However, the market sees major 

difficulties with the application of single-rotor interior 

permanent magnet machines due to their higher cost, high 

weight and also high CO2 emissions.  

In parallel to the development of synchronous reluctance 

motors [12-16] for industrial applications in the last more than 

two decades, many researchers in academia and industry have 

tried to use this motor topology in automotive different 

segments. However, vehicles with electric drive unit based on 

this motor topology are very limited. The main reasons are the 

low power factor which requires high current from the 

inverter, and the low torque to volume ratio. Additionally, 

challenges on the mechanical strength of the rotor structure 

are a major limiting factor when a high level of saliency-ratio 

is required to provide the constant power-speed range needed 

for the vehicle. As a result, the benefits of higher efficiency 

and low rotor losses have not been adequate for the 

automotive segment to move toward this motor technology. 

Externally excited synchronous machines (EESM) 

considering elimination of rare-earth permanent magnets in 

their topology has got some attention in passenger cars 

segment in the recent years, where they were introduced to 

small cars at the beginning of the second decade of this 

century and then they expanded to premium segments in the 

last five years. This motor topology offers a high efficiency at 

low torque and high-speed operating points which results in 



improved vehicle range in highway driving, which is 

important from customer experience point of view. However, 

the WLTP efficiency in this motor topology is normally lower 

than interior permanent magnet machines. Additionally, this 

motor topology needs an advanced rotor cooling, electronics 

to transfer energy to the rotor, and also special attention to the 

rotor structure. The main challenge with EESM topology is 

though the need for a high amount of copper in both the rotor 

and stator which makes it challenging from sustainability and 

cost points of view. Copper has the highest environmental 

load unit (ELU) after rare-earth magnet as well as a 

considerable amount of CO2 emission is produced when 

extracting this metal from the earth. As a result, however the 

rare-earth magnets are removed from the motor structure, but 

the significantly increased amount of the copper increases the 

CO2 emission and also cost of this product [17-19]. 

Axial flux permanent magnet has been introduced to e-

mobility’s different segments in the recent years [20-23]. The 

main challenge with the axial flux permanent magnet machine 

is however the high-volume production, and also the need for 

a high amount of magnet. As a result, this motor topology even 

considering its benefit in torque and power density has had 

difficulty in successful launch to high-volume passenger cars 

segment and, as a result, application of this motor topology is 

limited to high-end premium segment where the production 

volume is very limited and a high power density is required. 

In future, with new designs and also addressing production 

challenges, there may be an opportunity for this motor 

topology to access the high-volume segments.    

Recently, dual-rotor radial flux permanent magnet and 

induction machines are introduced to central drive 

configuration of propulsion systems after difficulties faced by 

outer rotor electrical machine topologies in getting to the 

market for in-wheel applications. Considering their innovative 

design, need for minimum amount of rare-earth magnet and 

copper, as well as the possibility to offer this technology in 

both the permanent magnet and induction motor, has made 

this motor topology an appealing choice for B-E passenger car 

segment OEMs [24]. In Fig. 1, the concept of the studied dual-

rotor permanent magnet machine is presented. As shown the 

stator is yoke-less and flux is well guided in the radial 

direction closing the loop through the inner and outer rotors. 

The combination of the counter-skewed stator and the 

distributed, non-fractional slot, results in a low torque ripple 

and noise emissions.  

However, the benefits of dual-rotor permanent magnet 

machines in cost, weight, sustainability, and production are 

well highlighted, the efficiency status of this motor topology 

in comparison to the state-of-the-art single-rotor permanent 

magnet machine has been considered as a matter of 

discussion. This is due to the fact that there are significant 

differences in the loss distribution of these two electrical 

machine topologies, where in dual-rotor permanent magnet 

machines, the losses resulted from the current ripples 

produced by the pulse-width modulation play a more 

important role considering the application solid parts in the 

structure of the electrical machine active part. As a result, any 

study on the efficiency should include a methodology that 

enables an accurate estimation of not only fundamental losses, 

but also the losses produced in the electrical machine due to 

the pulse-width modulation effects of the inverter and current 

ripples.  

Additionally, the impact of the pulse-width modulation on 

AC losses in the hairpin winding, magnet segments and steel 

lamination of the state-of-the-art single-rotor permanent 

magnet machine needs to be taken into account where the 

influence of electrical machine efficiency on the electric 

vehicle range in city or highway operation is of interest. 

The two motor topologies and their design process is 

elaborated in Section II. Section III includes the simulation 

method used in this study to accurately investigate losses in 

the electrical machine active parts taking into account pulse-

width modulation effects of the inverter. The resulting 

efficiency evaluation and the comparison of the two motor 

topologies is presented in section IV. Finally, conclusions are 

given in section V. 

 

 

Figure 1: Concept of the studied dual-rotor permanent magnet machine. 

II. OPTIMIZED DESIGNS FOR DIFFERENT MOTOR 

TOPOLOGIES 

Vehicle requirements on the system level are presented in 

Table I. The main required data are the wheel torque, peak 

power, and limitation in inverter maximum current, as well as 

the voltage characterized by the vehicle battery and its state-

of-the-charge.  

TABLE I. MOTOR PERFORMANCE REQUIREMENT. 

Characteristic Value Units 

Wheel Torque 4000 Nm 

Peak Power 255 kW 

Max. Current 470 Arms 

Nominal Voltage 600 VDC 

 

Such input data are provided together with the duty cycle, 

which defines the operating conditions that optimization 

process should refer to. In order to reach the attribute targets, 

e.g. performance, efficiency, cost and sustainability, an 

optimization process based on multi-objective genetic 

algorithm is employed, so that the design cases are evaluated 

toward the optimization targets in each generation. Each new 

generation is then produced based on the best cases of the 

previous generation starting from a random set of design 

parameters. The optimization process proceeds toward the 

desired level of satisfactory design defined by the 

optimization objectives generation after generation. For each 



design case, the electrical machine operation is simulated in 

three operating points as follows.  

- Point I: Peak operating conditions: maximum torque at 

base speed.  

- Point II: partial load and mid-range speed representing 

an average WLTP cycle.  

- Point III: partial load and high speed representing 

highway constant-speed driving.  

Following the design optimization process discussed 

above, selected designs are presented in Fig. 2 and Fig. 3 for 

single-rotor and dual-rotor radial flux permanent magnet 

machine, respectively. It should be noted that, the design of 

the interior permanent magnet machine is based on an 

advanced oil-cooled stator enabling a high current density in 

the stator hairpin winding [25-27]. However, the dual-rotor 

permanent magnet machine is assumed to be water-cooled. 

The selection of the cooling system is based on the best 

practices for these two motor topologies where it is tried to 

achieve the best possible design. 

 

Figure 2: Designed state-of-the-art single-rotor permanent magnet machine. 

 

Figure 3: Designed dual-rotor permanent magnet machine. 

 

Considering limitations in max speed for different motor 

topologies, different maximum torque targets are considered 

in the design optimizations carried out assuming the produced 

wheel torque is identical for all the motor topologies. The 

considered maximum speed of the single-rotor interior 

permanent magnet is 16000 rpm. However, the maximum 

considered speed of the dual-rotor machine is set to 14000 

rpm. The assumed maximum speeds are based on the 

structural analysis and over-speed tests of different motor 

topologies.  

On the materials used in different motor topologies, the 

stator and rotor of the interior permanent magnet are made of 

non-grain oriented electrical steel (NOES) laminations. For 

the dual-rotor radial flux machine, stator can be made using 

both the non-grain oriented electrical steel and grain-oriented 

electrical steel (GOES), since the stator design is yoke-less.  

A summary of comparative study on the two studied motor 

topologies is presented in Table II. As shown, the dual-rotor 

configuration needs considerably less rare-earth magnet and 

copper as well as steel lamination. This has resulted in 

considerably lower weight, CO2, and cost of the electrical 

machine active part. As can be seen, dual-rotor radial flux 

permanent machine produces less than 60% CO2, while 

keeping the cost of the active parts more than 40% lower. 

Additionally, the weight of the active part is reduced by 50% 

in the dual-rotor configuration in comparison to the state-of-

the-art single-rotor IPM.  

TABLE II. E-MACHINE PERFORMANCE AND EFFICIENCY 

COMPARISON AT THE HIGH-WAY OPERATION OF THE VECHILE. 

 

 

III. SIMULATION OF LOSSES TAKING INTO ACCOUNT 

PWM EFFECTS 

The field-oriented control and space vector pulse-width 
modulation have been implemented in the same environment 
as the finite element model of the electrical machine. The 
circuit of the space vector pulse-width modulation is presented 
in Fig. 4.  

The current amplitude and angle are transformed into dq 
currents of Id and Iq and then used in proportional–integral–
derivative controller with feed-forward EMF decoupling. The 
output of the proportional–integral–derivative controller is the 
d- and q-voltage. The command voltages are then transformed 
into a three-phase voltage signal control that is transferred in 
the space-vector voltage signals, where the triangular 3rd 



harmonic is injected. The three-phase transferred voltage is 
applied to the triangular wave comparison in order to generate 
the 3-phase pulse-width modulation signal for the 2- and 3-
level inverters to power the motor phases using the DC bus 
voltage.  

In order to model the behaviour of inverters that employ 

interrupts at the pulse-width modulation frequency for field-

oriented control, the feedback current signals are sampled in 

the same frequency as the pulse-width modulation frequency 

and kept within the pulse-width modulation period. 

Consequently, the d- and q-voltage commands are applied at 

the beginning of every pulse-width modulation period, 

however, the circuit is modelled at every finite element time 

step. The three-phase transform of the d- and q-voltage 

commands and the triangle wave comparison are made at 

each simulation time step, which is far faster than the 

assigned pulse-width modulation frequency. As a result, the 

resolution of the lower and upper leg switch activation of the 

considered inverter has a high resolution.  

The phase and current and voltage signal are presented in 

Fig. 5 and Fig. 6.  

 

 

 

 

Figure. 4: Overall circuit of SVPWM. 

A. Iron Loss Data and Calculation Options 

To consider the iron loss for the high frequency switching 

components properly, measured loss data have been collected 

from suppliers and implemented in the finite element analysis 

(FEA) software JMAG. The measured loss data of the 

considered lamination for 50, 100, 200, 400, 700, 1000, 2500, 

5000, 10000, 15000 and 20000 Hz have been added in the 

FEM database and used for the stator and rotor lamination  

The iron loss of the motor is the sum of the hysteresis and 

eddy-current loss of the iron sheet. Hysteresis loss within the 

lamination has been calculated by using the ‘apply loop’ 

method. In this method, the hysteresis loop is calculated 

based on the time domain magnetic flux density waveform 

and harmonic distortion in the waveform is used to represent 

the minor loops.  

Eddy-current loss within the iron sheet is calculated 

considering the current density in a single lamination and the 

total joule loss represents the axial length of the motor by 

combining 2D and 1D FEA. 1D FEA is constructed by 

dividing each lamination into 3 divisions along the lamination 

direction [28]-[29].    

  

 

Figure. 5: Current signals in three phases at 15kHz switching frequency. 

 

 

Figure. 6: Phase voltage signal at 15kHz switching frequency. 

IV. EFFICIENCY COMPARISON OF DIFFERENT MOTOR 

TOPOLOGIES 

 A comparison between the losses of the single- and dual-

rotor permanent magnet machines is presented in Table III and 

Table IV. Two operating points are considered in this study. 

The first operating point represents the high-way operation of 

the vehicle and the corresponding electrical machine 

operating point. The second operating point is selected to 

represent WLTP cycle operation. A more detailed comparison 

in cycle operation can be made by running both motors in the 

WLTP full cycle.  

The difference in torque and speed of the two motor 

topologies is due to the different in maximum speed that can 

be handled by the rotors mechanically which results in the 

constrains in selection of the gear ratio for the transmission. 

As shown, both the electrical machines are operating in the 

same switching frequency, however, the inverter 



configurations are different. The state-of-the-art single-rotor 

permanent magnet machine is equipped with a standard 2-

level inverter, and the dual-rotor permanent magnet machine 

is supplied by a 3-level inverter which is necessary for this 

motor topology considering the significant impact of the 

current ripples originated from the pulse-width modulation on 

the losses of the active part solid components. 

As shown, dual-rotor permanent magnet machine 

produces less iron losses in the stator lamination. This is due 

to the fact that the stator of dual-rotor permanent magnet 

machine is yoke-less. This difference is further highlighted in 

the dual-rotor design with the stator built of GOES which can 

be hardly applied to the single-rotor permanent magnet 

machines. Additionally, the innovative stator design of the 

dual-rotor machine enables manufacturing of a compact 

winding with high fill factor which results in lower copper 

losses in the winding.  

Due to the surface-mounted design of the dual-rotor, 

magnet losses are higher in this motor topology in comparison 

to the state-of-the-art single-rotor permanent magnet machine 

with interior magnet. Also, due to the existence of two rotating 

parts, higher air friction losses are produced in dual-rotor 

machine.  The total losses are however lower in dual-rotor 

configuration, and as a result, this motor topology provides a 

higher efficiency which is an important attribute in passenger 

car BEVs. 

TABLE III. E-MACHINE PERFORMANCE AND EFFICIENCY 

COMPARISON AT THE HIGH-WAY OPERATION OF THE VEHICLE. 

 IPM Dual-rotor PM 
NOES Stator 

Dual-rotor PM 
GOES Stator 

Torque 23 Nm 26 Nm 26 Nm 

Speed 8000 rpm 7000 rpm 7000 rpm 

Switching 

Frequency 

15 kHz 15 kHz 15 kHz 

Iron losses 780 W 695 W 620 W 

Winding 

losses 
150 W 50 W 50 W 

Magnet 

losses 

48 W 60 W 60 W 

Air friction 

losses 
100 W 148 W 148 W 

Efficiency 94.7% 95.2% 95.6% 

 

I. CONCLUSION 

The main motor topology used currently in automotive 

segment is single-rotor interior permanent magnet machine 

where more than 85% of the passenger cars propulsion system 

is built using this motor topology. However, this motor 

configuration is not sustainable and has driven a high level of 

CO2 emission and cost in the electric drive unit. In the recent 

years, alternative electric machine topologies are introduced 

to the passenger car segment with the aim of providing a more 

sustainable solution and reducing the cost of the product. 

However, the new solutions hardly provide equivalent or 

better efficiency in both the high-speed and WLTP operation 

of the vehicle in comparison to the state-of-the-art solution.  

In this study, it is shown that dual-rotor radial-flux 

permanent magnet machines provides advantages in not only 

sustainability, weight and cost, but also in efficiency. This is 

of course under the condition that this motor topology is 

equipped with a 3-level inverter. Considering the significant 

cost saving in the active part cost of dual-rotor permanent 

magnet machine, part of this saving can be invested on the 

inverter side and still benefiting from a lower system total 

system cost.   

TABLE IV. E-MACHINE PERFORMANCE AND EFFICIENCY 

COMPARISON AT THE AVERAGE WLTP OPERATION OF THE 

VECHILE. 

 IPM Dual-rotor PM 
NOES Stator 

Dual-rotor PM 
GOES Stator 

Torque 33 Nm 38 Nm 38 Nm 

Speed 5500 rpm 4800 rpm 4800 rpm 

Switching 

Frequency 
15 kHz 15 kHz 15 kHz 

Iron losses 560 W 360 W 310 W 

Winding 

losses 

180 W 120 W 120 W 

Magnet 

losses 
47 W 40 W 40 W 

Air friction 

losses 

40 W 56 W 56 W 

Efficiency 95.8% 97.1% 97.3% 
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